抖音日活用户破 6 亿,推荐系统到底有何魔力? | 极客时间

2021年5月31日 385点热度 0人点赞 0条评论
图片

如果说互联网的目标,是连接一切,那么推荐系统的作用,就是建立更加高效的连接了。

推荐系统从没像现在这样,影响着我们的生活。当你上网购物时,天猫、京东会为你推荐商品;想了解资讯,头条、知乎会为你准备感兴趣的新闻;想消遣放松,抖音、快手会为你奉上让你欲罢不能的短视频。

而驱动这些巨头进行推荐服务的,都是基于深度学习的推荐模型。

2019 年阿里的千人千面系统,促成了天猫“双 11” 2684 亿成交额。假设通过改进商品推荐功能,使平台整体的转化率提升 1%,就能在 2684 亿成交额的基础上,再增加 26.84 亿。这就是推荐工程师的最牛的地方,也是它支撑起百万年薪的原因。

但在一个成熟的推荐系统上,找到提升的突破点并不容易——不能满足于协同过滤、矩阵分解这类传统方法,而要建立起完整的“深度学习推荐系统”知识体系,加深对深度学习模型的理解,以及大数据平台的熟悉程度,才能实现整体效果上的优化。

最近,我又重新读了读《深度学习推荐系统》这个专栏,2 刷有不少新的启发。作者王喆,Roku 推荐系统架构负责人,一直深耕在推荐系统、计算广告领域,经验非常丰富,可以说是领域里名副其实的 KOL。

之前他的同名的书籍,豆瓣评分 9.3,也是我当年的入门读物。对比书偏模型原理,专栏主打的就是动手实操,并通过 30+ 深度学习推荐系统问题,带你串联起完整知识体系。来看看王喆总结的「核心知识图谱」,建议收藏。

图片

总结来说,他讲了深度学习推荐系统的经典架构设计,带你掌握 Embedding 技术的主要实现方法。最重要的是,王喆特地开发了一个开源项目「 SparrowRecsys」,让你亲手搭建一个工业级的深度学习推荐系统(下面有详细介绍,很有意思),有很多技术细节的实现和讨论。

毫不夸张的说,这个专栏让我对深度学习推荐系统的认知,提升到了一个新高度,推荐给你?

图片

秒杀 + 口令「happy2021」

到手仅 ¥89 ,今晚恢复 ¥129

新用户仅需 ¥59.9

1王喆这课,凭什么值得买?

先来说说这个专栏最大的特色「SparrowRecsys 推荐系统」。王喆把它叫做“麻雀推荐系统”,取“麻雀虽小、五脏俱全”之意,它利用了开源的 movielens 数据集,搭建起了包括:

Spark、Flink 特征工程
TensorFlow 深度学习模型训练
TensorFlow Serving 模型服务
Redis 在线特征数据库
Jetty Server 推荐服务器
JS 前端实现

以上这些在内的,一整套深度学习推荐系统。不说它能支撑起一个中大型公司的推荐系统,但是毫无疑问,它可以成为一个业级推荐系统的种子项目。而这一切,都能在课程里,一步步尝试搭建起来。

最后你实现的推荐系统会是这个样子?

图片SparrowRecSys 的首页图片SparrowRecSys 的相似电影推荐页

在这些前端页面的背后,是你能实现的一个又一个深度学习模型:

  • 对于电影的相似推荐功能,王喆会使用各种 Embedding based 的方法,比如 item2vec,graph embedding 等等。

  • 对于推荐功能,会基于 TensorFlow 实现 Embedding MLP,Wide&Deep,NerualCF,Two Towers,DeepFM,DIN 等等深度学习模型,然后使用 TensorFlow serving 去进行模型服务。

  • 对于召回层、排序层这些推荐逻辑,也会全盘在基于 Jetty 的推荐服务器中实现。

整个项目整体的技术架构是下面这个样子的:

图片SparrowRecSys 的技术架构

是不是感觉很牛。而且专栏本计划是 30 讲,王喆生生写到 43 讲,补充讨论了很多热门问题,这种单纯的分享精神,也是很难得了。

在这里贴 15 个专栏里讨论的问题,看专栏留言区的讨论,感觉收获更大。

图片

2他是怎样把深度学习推荐系统,讲明白的?

整体遵循了经典推荐系统的框架,分为 6 部分,学懂了,实现一个工业级的深度学习推荐系统,不成问题,简单介绍下:

基础架构篇:讲要从 0 开始实现的推荐系统, Sparrow RecSys 的主要功能和技术架构,也会用到 Spark、Flink、TensorFlow 等业界最流行的机器学习和大数据框架。

特征工程篇:讨论推荐系统会用到的特征,以及主要的特征处理方式,并将其实践在 Spark 上。此外,还有深度学习中非常流行的 Embedding、Graph Embedding 技术,并带你实现 Sparrow Recsys 中的相似电影推荐功能。

线上服务篇:带你搭建一个推荐服务器,包括服务器、存储、缓存、模型服务等模块和相关知识,涉及 Jetty Server, Spark、Redis 的使用。

推荐模型篇:深度学习推荐模型的原理和实现方法,包括 Embedding+MLP ,Wide&Deep,PNN 等深度学习模型的架构和 TensorFlow 实现,以及注意力机制、序列模型、增强学习等相关领域的前沿进展。

效果评估篇:效果评估的主要方法和指标,建立起包括线下评估、线上 AB 测试、评估反馈闭环等整套的评估体系,真正能够用业界的方法,而不是实验室的指标来评价一个推荐系统。

前沿拓展篇:讲 YouTube、阿里巴巴、微软、Pinterest 等一线公司的深度学习应用,帮你追踪业界发展的最新趋势。

目录也放这儿了?

图片

可以说,王喆老师的书也好,课也好,从未叫人失望过,而且他人也特别 nice,经常在专栏下面跟读者留言互动,这种耐心和责任心,真不是一般人有的。

图片

秒杀 + 口令「happy2021」

到手仅 ¥89 ,即将恢复¥129

新用户仅要 ¥59.9

没计划的学习,都只是作秀。与其花时间找一堆资料,还不如有计划的消化一个系统的课,更值。

?点击「阅读原文」,带你亲手操作一个推荐系统。

56260抖音日活用户破 6 亿,推荐系统到底有何魔力? | 极客时间

这个人很懒,什么都没留下

文章评论