非参数bootstrap方法详解

2018年12月8日 267点热度 0人点赞 0条评论

图片

在统计学中,自助法(Bootstrap Method,Bootstrapping或自助抽样法)是一种从给定训练集中有放回的均匀抽样,也就是说,每当选中一个样本,它等可能地被再次选中并被再次添加到训练集中。自助法由Bradley Efron于1979年在《Annals of Statistics》上发表。当样本来自总体,能以正态分布来描述,其抽样分布(Sampling Distribution)为正态分布(The Normal Distribution);但当样本来自的总体无法以正态分布来描述,则以渐进分析法、自助法等来分析。采用随机可置换抽样(random sampling with replacement)。对于小数据集,自助法效果很好。


最常用的一种Bootstrap自助法,假设给定的数据集包含d个样本。该数据集有放回地抽样m次,产生m个样本的训练集。这样原数据样本中的某些样本很可能在该样本集中出现多次。没有进入该训练集的样本最终形成检验集(测试集)。 显然每个样本被选中的概率是1/m,因此未被选中的概率就是(1-1/m),这样一个样本在训练集中没出现的概率就是m次都未被选中的概率,即(1-1/m)^m。当m趋于无穷大时,这一概率就将趋近于e^-1=0.368,所以留在训练集中的样本大概就占原来数据集的63.2%。


例如:人工样本为1,2,3;只有三个样本,则可以从随机变量X,分布为P(X=k)=1/3, k=1,2,3; 这样的经验分布中用计算机根据上述分布自动产生样本,如产生5个样本:1 2 3 2 1;也可以是:3 3 2 1 1。自助法在数据集较小、难以有效划分训练集和测试集时很有用;此外,自助法能从初始数据集中产生多个不同的训练集,这对集成学习等方法有很大的好处。然而,自助法产生的数据集改变了初始数据集的分布,这会引入估计偏差。因此,在初始数据量足够时,留出法和交叉验证法更常用一些。下面,咱们通过一列slides来看看bootstrap方法。如果不懂这些具体运算,对这种方法有大致的印象也对今后的研究工作有很大的帮助。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

来源:计量经济圈微信公众号,版权归作者所有!

图片

40360非参数bootstrap方法详解

这个人很懒,什么都没留下

文章评论